CONTROLLING FTC ROBOTS

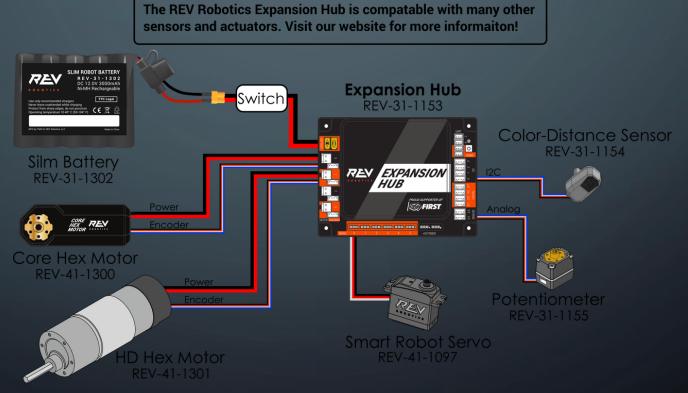
 \cap

0

Q

DRIVER STATION

- 1 Android Phone Sends Input to Robot
- 2 Gamepads Provides Input for Robot
- 1 USB Hub Connects Gamepads to Phone
- 1 USB OTG Cable Connects Phone to USB Hub


ROBOT: MODERN ROBOTICS

THE ROBOT: REV ROBOTICS

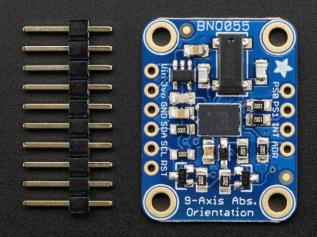
REV Robotics Wiring Reference Sheet

for more reference guides visit www.revrobotics.com/resources

ACTUATORS

Motors

- With Encoders
- Without Encoders
- Servos
 - 180 Degree
 - Continuous Rotation



SENSORS

- Wide Variety of Sensors Available
 - I2C
 - IMU
 - Color Sensor
 - Range Sensors
 - Digital
 - Touch Button
 - Analog
 - Potentiometer
 - Range Sensors

HOW TO PROGRAM ROBOTS

- 2 Options
 - Line by Line Code Java

← → C ① 192.168.49.1:8080/FtcBlocks.html?project=MyFIRSTOpMode

As FTC - MyFIRSTOpMode ×

Op Mode Name: MyFIRSTOpMod

FIRST

Save Op Mo

→ LinearOpMode

Other Devices

Gamepad
Actuators

Sensors

Utilities

Logic

Loops

Math

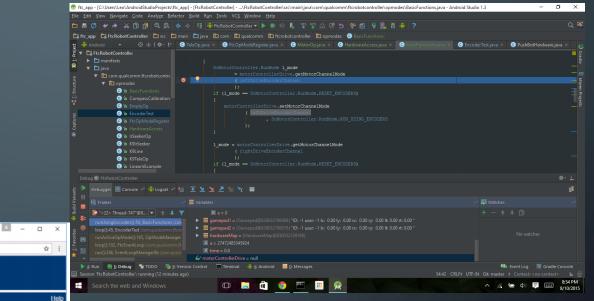
Text Lists Variables Functions Miscellaneous

• Block Code – Google Blockly

his function is executed when this Op Mode is selected from the Driver Station

peat while . I cal MyFIRSTOpMode opModelsActive

to runOpMode


Put initialization blocks here.

Put loop blocks here.

cal telemetry . update

Put run blocks here.

MyFIRSTOpMode waitForStart

PROGRAMMING GOOD PRACTICE

- Always Consume Pizza and Caffeine Before Programming
- Keep Code Organized and Consistent
- //Comment Comment Comment
- Communicate With The Team Working on Electronics and Other Programmers
- Keep Your Code Modular
 - If using Java, use general OOP design principles
- Find Existing Libraries

DRIVING A MOTOR

- 3 Options to Drive Motor
 - Mapping Controller Input
 - Left Joystick Controls Motor 1
 - Button A Runs Motor 2 at 70% Power
 - Time
 - Drive for T Seconds Then Stop
 - Sensor Input
 - Range Sensor Drive Until X Distance Away
 - Encoder Drive X Rotations or Y Distance
 - Color Sensor Drive Until 0,0,0 RGB Value Found

RUNNING A SERVO

• 3 Options to Run a Servo

- Mapping to Controller Input
 - Left-Joystick Determines Position of Servo 1
 - A Button sets Servo 2 to 180deg. B Button sets servo 2 to 70deg.

• Time

- After 3 seconds, set Servo 1 to 70deg.
- Sensors
 - Range Sensor- When X distance from wall, set Servo 2 to 45deg.
 - Range Sensor- As distance to wall decreases, increase the angle of Servo 3
 - Color Sensor- If RGB value = 255,0,0 set Servo 3 to 180deg. If RGB value = 0,255,0 set Servo 4 to 180deg.

RUNNING A DRIVE TRAIN

- Tank Drive
 - This is the simplest and most common drive scheme for a robot
 - Left Joystick
 - y-axis maps to Left Front and Left Rear Motor Power
 - Right Joystick
 - y-axis maps to Right Front and Right Rear Motor Power
- Holonomic Drive
 - These are more complex and solutions are specific to the type of holonomic drive
 - A typical control scheme is as follows:
 - Left Joystick
 - X-axis maps to left and right motion
 - Y-axis maps to forward and revers motion
 - Right joystick
 - X-axis maps to rotation of the robot

SENSORS

• Digital

- Communicates with either a 1 or a 0 depending on its state
- Switch/Push Button
- Analog
 - Communicates with stream of values ranging from 0 to 255
 - Ultrasonic Sensor, Potentiometer
- I2C
 - Each Sensor has a Unique Address
 - Communicates in Packets both Sent and Received
 - Color Sensor, Hybrid Range Sensor, IMU