
P R O G R A M M I N G F T C R O B O T S
W I T H

A N D R O I D S T U D IO
EAGLE ROBOTICS TEAM 7373

DISCLAIMER

• This is only an overview

• We cannot cover every aspect of Android Studio

• If you have questions, contact us using the information provided in your

handout or check out our code library: eaglerobotics.net/code

SYSTEM.OUT.PRINTLN(“WELCOME!”);

• What tools will you need to code in Android Studio?

• JDK 8

• Android Studio 2.1

• The latest version of the ftc_app from GitHub

ANDROID STUDIO INTERFACE

Project

Window

Program

Editor

Tool Windows

ANDROID STUDIO INTERFACE

NAVIGATING PROJECTS

Package

Classes

EDITING OPMODES

REGISTERING OPMODES

• In order to use an opmode, it must be enabled

• In order to do this you only need to comment out one line of code above the

class header

• You can also change the labels that describe your opmode to keep things

more organized

• They can be organized by Autonomous/Teleop, Group, and Name

@Autonomous(name = "Concept: NullOp", group = "Concept")

//@Disabled

public class ConceptNullOp extends OpMode {

UPLOADING THE PROJECT

• Plug in Android Robot Controller

• Press Play Button in Menu

• Select Android Device to Deploy to

• Press OK

• The App Should Now be on your

Android Robot Controller

BASIC JAVA SYNTAX

• Almost All Statements will end with a ;

• i.e. System.out.println(“Hello World”);

• Every method or class will be surrounded by braces

• i.e.

public void method ()

{

//Code goes here…

}

BASIC JAVA SYNTAX

• Comments can be written using //

• These are ignored by the compiler but help to document and organize code

• i.e.

//set drive motor power to 1

driveMotor.setPower(1);

• These can also be quite helpful for testing small sections of the code at a time

• Comments can span multiple lines if the following from is used

• /*

* put an asterisk on every line

* then you can comment

* on multiple lines

*/

JAVA VARIABLE TYPES

• Double, float, and int

• These are the most commonly used number type in programming FTC robots

• boolean

• This is a value that stores TRUE or FALSE

• This is used for logic statements such as While, For, If, etc.

• Enumerated types

• These are a specific type of variable that can hold explicit values like Go, Stop, Start…

• This is not the same as a string

JAVA LOGIC OPERTATORS

• && - And

• || - Or

• ! - Note

• == - Equals

• > - Greater Than

• < - Less Than

• >= - Greater Than or Equal To

• <= Less Than or Equal To

• != - Does Not Equal

JAVA ITERATIVE AND LOGIC STATEMENTS

• while(conditions) { … }

• for(int i = 0; I <= 100; 1++) { … }

• if(condition) { … } else { … }

• switch(case){ case 1: … break; case 2: … break; default: … break;

OPMODEISACTIVE() METHOD

• opModeIsActive();

• Returns a Boolean

• This method is very important to be able to stop your robot at any time even

when you are running a loop

• while(opModeIsActive()) { … }

BASIC FORM OF A PROGRAM

• There are 2 basic forms any robot program will take

• Iterative

• Init/start Method

• Starts when init button is hit in driver station

• Runs code once then waits for start to move to run the start and then loop method

• loop Method

• Runs repeatedly until stopped by the driver station

• Linear

• runOpMode Method

• Runs through only once until stop button is pressed or timer runs out

• waitForStart method is used to separate the initialization of the robot from the start of the program

INITIALIZING THE ROBOT

• Create objects Servo and Motor

• i.e.

Motor leftdrive;

Servo arm;

• Reference the variable to the hardware map

• leftdrive = hardwareMap.dcMotor.get(“motor name”);

arm = hardwareMap.servo.get(“servo name”);

• Fill in motor name or servo name for the name used on the robot controller hardware

map

• Keep these names simple and consistent yet descriptive

RUNNING THE ROBOT

• Use either object gamepad1 or gamepad2 to get input

• Fill in * for direction, Left, Right

gamepad1. Output Range

*_bumper Boolean True or False

*_trigger Float [0,1]

*_stick_y or *_stick_x Float [-1,1]

dpad_* Boolean True or False

a, b, x, y Boolean True or False

RUNNING THE ROBOT: MOTORS

• Running a motor

• motor.setPower(float);

• Fill in your motor variable for motor name and drive power value for float

• This drive power can be from -1 to 1

• If a value outside the bounds is sent, a null pointer error will be returned

• To prevent this clip the range of the input into the motor

• power = Range.clip(power, -1, 1);

• Use the gamepad joystick to control your power variable

• float power = gamepad1.left_joystick_y;

power = Range.clip(power, -1, 1);

motor.setPower(power);

RUNNING THE ROBOT: SERVOS

• Running a servo

• servo.setPosition(float)

• Fill in servo variable name for servo and position value for float

• The position can be from 0 to 1

• The same range clipping technique can be used for servos

• position = Range.clip(position, 0, 1);

• Running a servo…

• if(gamepad1.dpad_up) {

servo.setPosition(1);

} else {

servo.setPosition(0);

}

A BASIC TELEOP

public void init()

{

Servo arm;

Motor leftDrive;

Motor rightDrive;

arm = hardwareMap.servo.get(“arm”);

leftdrive = hardwareMap.motor.get(“leftdrive”);

rightDrive = hardwareMap.motor.get(“rightdrive”);

}

A BASIC TELEOP

public void loop()

{

//get boolean values from dpad and change position of servo

if(gamepad1.dpad_up) {
servo.setPosition(1);
} else if(gamepad1.dpad_down){
servo.setPosition(0);
}

//get power from left joystick and run motor

float leftPower = gamepad1.left_joystick_y;

power = Range.clip(leftPower, -1, 1);

leftDrive.setPower(leftPower);

float rightPower = gamepad1.right_joystick_y;

power = Range.clip(leftPower, -1, 1);

rightDrive.setPower(rightPower);

}

QUESTIONS?

• www.eaglerobotics.net/code

• Email us at team7373robotics@gmail.com or kk4jrq@gmail.com

eaglerobotics.net/code
mailto:team7373robotics@gmail.com
mailto:kk4jrq@gmail.com

